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Abstract. Applying the Pasquier–Gaudin procedure we construct Baxter’sQ operator for the
homogeneousXXX model as an integral operator in the standard representation ofSL(2). The
connection between theQoperator and the local Hamiltonians is discussed. We show that Lipatov’s
duality symmetry operator arises naturally as the leading term of the asymptotic expansion of the
Q operator for large values of the spectral parameter.

1. Introduction

The modern approach to the theory of integrable systems is given by the quantum inverse
scattering method (QISM) [4, 7]. In the framework of QISM, the eigenstates|λ1, . . . , λl〉
are obtained by the algebraic Bethe ansatz (ABA) method as excitations over the vacuum
state and the spectral problem is reduced to the set of algebraic Bethe equations (BE) for the
parametersλj . In fact the ABA is equivalent to the construction of the eigenfunctions in a
special representation as polynomials of some suitable variables.

The alternative approach is theQ-operator method [1] proposed by Baxter: an operator
Q̂(λ) exists which obeys Baxter’s equation. The set of Bethe equations is equivalent to
Baxter’s equation for the eigenvalueQ(λ) of the Q operator. This second-order, finite-
difference equation is the simple consequence of Baxter’s relation for the transfer matrix
and theQ operator [1].

The ABA andQ-operator method are equivalent when eigenfunctions and therefore
Q(λ) are polynomials. In the more general ‘non-polynomial’ situation one could use the
Q-operator method. TheQ operator for the periodic Toda chain was constructed by Pasquier
and Gaudin [2]. The application of theQ operator for the construction of eigenstates with
arbitrary complex values of conformal weights in theXXX spin-chain case was considered
by Korchemsky and Faddeev [7]. In the present paper we construct theQ operator for the
homogeneousXXX spin chain using the Pasquier–Gaudin procedure.

The paper is organized as follows. In section 2 we introduces definitions and the standard
facts about Baxter’s equation and the construction of local Hamiltonians. In section 3 we
construct theQ operator and study some properties of theQ operator obtained in the simplest
case of a homogeneous chain. In section 4 we obtain the connection between theQ operator
and the local Hamiltonian. In section 5 we consider the asymptotic expansion of theQ operator
for large spectral parameter. The duality symmetry operator introduced by Lipatov [9] appears
naturally as the leading term in this asymptotic. Finally, in section 6 we summarize our results.
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2. TheXXX spin chain

In this section we collect some basic facts about theXXX spin chain.

2.1. TheR matrix and the Yang–Baxter equation

The main object is the so-calledR matrix which is the solution of the Yang–Baxter equation

R12(λ)R13(λ +µ)R23(µ) = R23(µ)R13(λ +µ)R12(λ). (2.1.1)

The operatorRij (λ) depends on some complex variable: the spectral parameterλ and two sets
of SL(2)-generatorsESi and ESj acting in different vector spacesVi andVj .

Fixing the representations of the spinssi andsj in the vector spacesVi andVj , we obtain
the followingR matrices.

• s = 1/2 in spaceVi and arbitrary representations for theVj :

Rj(λ) = λ + 1
2η + η · ESj Eσ .

ThisR matrix is used for the construction of the LaxL operator:

Li(λ) ≡ R
(
λ− η

2

)
= λ + η · ESi Eσ =

(
λ + ηSi ηS−i
ηS+

i λ− ηSi

)
. (2.1.2)

• The equivalent representationss in the spacesVi andVj [3]:

Rij (λ) = Pij · 0(Jij + ηλ)

0(Jij − ηλ) Jij · (Jij − 1) = Lij (2.1.3)

wherePij is the permutation andLij is the ‘two-particle’ Casimir inVi ⊗ Vj . This
fundamentalRmatrix is the building block for the construction of the local Hamiltonians.

2.2. Baxter’s equation for theXXX model.

The ‘usual’ quantum monodromy matrixT (λ) is defined as the product of theL matrices in
the common two-dimensional auxiliary space.T (λ) is a 2× 2 matrix with operator entries
acting in the quantum space⊗ni=1Vi :

T (λ) ≡ L1(λ + c1)L2(λ + c2) · · ·Ln(λ + cn) =
(
A(λ) B(λ)

C(λ) D(λ)

)
. (2.2.1)

The quantum transfer matrixt (λ) is obtained by taking the trace ofT (λ) in the auxiliary space:

t (λ) ≡ Tr T (λ) = A(λ) +D(λ). (2.2.2)

Due to the Yang–Baxter equation the family of operatorst (λ) commutes, itsλ expansion
begins with powerλn and providesn− 1 commuting operatorsQk:

t (λ) · t (µ) = t (µ) · t (λ) t (λ) = 2λn +
n−2∑
k=0

Qkλ
k. (2.2.3)

It is possible to show that the transfer matrixt (λ) is SL(2)-invariant

[ ES, t (λ)] = 0 ES ≡
n∑
k=1

ESk.

Therefore there exists the ‘full’ set ofn commuting operators:n − 1 operatorsQk and the
operatorS. Due toSL(2)-invariance the subspace of the eigenvectors of the operatort (λ)with
eigenvalueτ(λ) is theSL(2)module generated by the highest-weight vector9, i.e. the vector
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space spanned by linear combinations of monomials in theS+ applied to the vector9. The
highest-weight vector9 is defined by the equationS−9 = 0.

We shall work in the standard representation of the groupSL(2):

S9(x) ≡ (cx + d)−2s9

(
ax + b

cx + d

)
S−1 =

(
a b

c d

)
where theSL(2)-generators are given as differential operators:

Sk = xk∂k + sk S−k = −∂k S+
k = x2

k ∂k + 2skxk (2.2.4)

acting in the space of polynomials of the variablexk. Here the ‘spin’sk is an arbitrary number.
In this representation the commuting operatorsQk are ‘local’ differential operators acting in
the space of polynomials of then variablesx1, . . . , xn and there exists the vacuum vector|0〉:

B(λ)|0〉 = 0 A(λ)|0〉 = 1+(λ)|0〉 D(λ)|0〉 = 1−(λ)|0〉
so that we can use the algebraic Bethe ansatz (ABA) method and reduce the problem of the
common diagonalization of the operatorsQk andS:

t (λ)9l = τ(λ)9l S9l =
(
l +

n∑
k=1

sk

)
9l

to the solution of the Bethe equation [4, 6]. The vacuum vector|0〉 is the common highest
vector of the local representations ofSL(2):

|0〉 ≡
n∏
k=1

|0〉k S−k |0〉k = 0 Sk|0〉k = sk|0〉k

and

Lk(λ + ck)|0〉k =
(
λ + ck + ηsk 0

· · · λ + ck − ηsk

)
|0〉k

so that

1±(λ) ≡
n∏
k=1

(λ + ck ± ηsk). (2.2.5)

Let us look now at the eigenvector9l in the form

9l ≡ |λ1, . . . , λl〉 ≡
l∏

j=1

C(λj )|0〉 S|λ1, . . . , λl〉 =
(
l +

n∑
k=1

sk

)
|λ1, . . . , λl〉.

It is possible to show that the vector|λ1, . . . , λl〉 is an eigenvector of the operatort (λ) with
eigenvalue

τ(λ) = 1+(λ)

l∏
j=1

(λ− λj + η)

(λ− λj ) +1−(λ)
l∏

j=1

(λ− λj − η)
(λ− λj ) (2.2.6)

on condition that the parametersλi obey the Bethe equations

l∏
j=1

(λi − λj + η)1+(λi) =
l∏

j=1

(λi − λj − η)1−(λi). (2.2.7)

It also appears that Bethe vectors|λ1, . . . , λl〉 are the highest-weight vectors

S−|λ1, . . . , λl〉 = 0.
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In the representation (2.2.4) the highest-weight vector9l is represented by a homogeneous,
translation-invariant polynomial of degreel (l = 0, 1, 2, . . .) in n variablesx1, . . . , xn:
n∑
k=1

xk∂k9l(x1, . . . , xn) = l9l(x1, . . . , xn)

n∑
k=1

∂k9l(x1, . . . , xn) = 0. (2.2.8)

One can obtain the Bethe equation from the formula forτ(λ) by taking the residue atλ = λi
and using the fact that the polynomialτ(λ) is regular at this point. Finally, we see that
equations (2.2.6), (2.2.7) are equivalent to Baxter’s equation for the polynomialQ(λ):

τ(λ)Q(λ) = 1+(λ)Q(λ + η) +1−(λ)Q(λ− η) (2.2.9)

where

Q(λ) ≡ constant×
l∏

j=1

(λ− λj ). (2.2.10)

2.3. Local Hamiltonians

Let us consider the homogeneousXXX chain of equal spins:ck = 0 andsk = s and fix the
same representations in auxiliary space. In this case the quantum monodromy matrixTs(λ)

is the product of the fundamentalR matrices (2.1.3):

Ts(λ) ≡ R1(λ)R2(λ) · · ·Rn(λ).
The transfer matrixts(λ) is obtained by taking the trace ofTs(λ) in the auxiliary space, and
due to the Yang–Baxter equation the families of operatorsts(λ) andt (λ) commute:

ts(λ) ≡ Trs Ts(λ) ts(λ)ts(µ) = ts(µ)ts(λ) t (λ)ts(µ) = ts(µ)t (λ).
Theλ expansion of the logts(λ) provides the HamiltoniansHk:

Hk ≡ 1

η

∂k

∂λk
log ts(λ)

∣∣∣∣
λ=0

[Hk,Hl ] = 0 [Hk,Ql ] = 0 (2.3.1)

where thekth operator describes the interaction betweenk+1 nearest neighbours on the chain.
Due to the evident equalities (see equations (2.1.3))

Rij (0) = Pij R′ij (0) = 2ηPij · ψ(Jij )
one obtains the following expression for the first ‘two-particle’ HamiltonianH1:

H1 =
n∑
k=1

Ĥk−1,k Ĥk−1,k = 1

η
Pk−1,kR

′
k−1,k = 2 · ψ(Jk−1,k)

whereψ(x) is logarithmic derivative of0(x). It is convenient to work with the ‘shifted’
Hamiltonian

H =
n∑
k=1

Hk−1,k Hk−1,k = 2 · ψ(Jk−1,k)− 2ψ(2s) (2.3.2)

where the ‘shift’ constant is defined by the requirement

Hk−1,k|0〉 = 0.

Let us calculate the eigenvalues of the operatorHk−1,k. The operatorHk−1,k isSL(2)-invariant:

[S±k−1 + S±k , Hk−1,k] = 0 [Sk−1 + Sk,Hk−1,k] = 0

and its highest-weight eigenfunctions9l have the following simple form in the
representation (2.2.4):

(xk−1∂k−1 + xk∂k)9l = l9l (∂k−1 + ∂k)9l = 0 ⇒ 9l(xk−1, xk) = (xk−1− xk)l.
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The two-particle CasimirLk−1,k is the second-order differential operator

Lk−1,k = −(xk−1− xk)2−2s∂k−1∂k(xk−1− xk)2s
and its eigenvaluesLl and the eigenvaluesJl of the operatorJk−1,k can easily be calculated:

Ll = (2s + l)(2s + l − 1) Jl = 2s + l.

Finally we obtain the eigenvaluesHl of the operatorHk−1,k:

Hl = 2ψ(2s + l)− 2ψ(2s).

In the representation (2.2.4) the operatorHk−1,k can be realized as some ‘two-particle’ integral
operator acting on the variablesxk−1 andxk:

Hk−1,k9(xk−1, xk) = −
∫ 1

0
dα

ᾱ2s−1

α

[
9(ᾱxk−1 + αxk, xk) +9(xk−1, αxk−1 + ᾱxk)

− 29(xk−1, xk)
]

(2.3.3)

whereᾱ ≡ 1− α. Note that these integral operators arise naturally in QCD [8]. To prove the
equality (2.3.3) it is sufficient to show that the eigenvalues of the integral operator coincide
with the eigenvaluesHl :

−2
∫ 1

0
dα

ᾱ2s−1

α

[
ᾱl − 1

] = 2
[
ψ(2s + l)− ψ(2s)].

The expression for the eigenvalues of the full HamiltonianH can be found by the ABA
method [5]:

H = 1

η

l∑
j=1

∂

∂λj
log

λj + ηs

λj − ηs =
1

η

l∑
j=1

[
1

ηs − λj +
1

ηs + λj

]
.

It is possible to rewrite this expression in terms of theQ(λ) function (2.2.10) as follows:

H = Q′(ηs)
ηQ(ηs)

− Q′(−ηs)
ηQ(−ηs) . (2.3.4)

There exists an additional operator which commutes with the transfer matrix. It is the shift
operatorP :

P9(z1, z2, . . . , zn) = 9(zn, z1, . . . , zn−1) P = ts(0). (2.3.5)

The eigenvalues of the shift operatorP can also be found by the ABA method [5]:

Pl =
l∏

j=1

λj − ηs
λj + ηs

= Q(ηs)

Q(−ηs) . (2.3.6)

In the following sections we shall construct Baxter’sQ operator and show that Baxter’s
equation (2.2.9) and equations (2.3.4), (2.3.6) arise from the corresponding relations for the
Q operator.

3. Baxter’s Q operator

Baxter’sQ operator is the operator̂Q(λ) with the properties [1]:

• t (λ)Q̂(λ) = 1+(λ)Q̂(λ + η) +1−(λ)Q̂(λ− η)
• Q̂(µ)Q̂(λ) = Q̂(λ)Q̂(µ)
• t (µ)Q̂(λ) = Q̂(λ)t (µ).
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The operatorsQ̂(λ) andt (λ) have the common set of eigenfunctions

Q̂(λ)9 = Q(λ) ·9 t(λ)9 = τ(λ) ·9 (3.0.1)

and eigenvalues of these operators obey Baxter’s equation (2.2.9). Note that theQ function
(2.2.10) can be naturally interpreted as the eigenvalue of theQ operator.

We construct the operator̂Q(λ) in the standard representation of the groupSL(2) in the
following form:

Q̂(λ)9(x) ≡ 〈RQ(λ; x, z)|9(z)〉 RQ(λ; z) ≡ z−2sQ(λ; z−1) (3.0.2)

whereR is the transformation of inversion. The scalar product here is the standardSL(2)-
invariant scalar product for functions of the one variable:

〈9(z)|8(z)〉 =
∫
|z|61

Dz9(z̄)8(z) Dz ≡ 2s − 1

π

dz dz̄

(1− z̄z)2−2s
(3.0.3)

andz is the ‘integration’ or ‘dumb’ variable (̄z is its complex conjugate). In (3.0.2) the scalar
product over all variablesz1, . . . , zn is assumed. TheSL(2)-generatorsS± are conjugated
with respect to this scalar product:

〈9|S±8〉 = −〈S∓9|8〉 〈9|S8〉 = 〈S9|8〉.
Using the obvious identities

R8(z) = z−2s8(z−1) RS±8(z) = S∓R8(z) RS8(z) = −SR8(z)
we obtain the following rules for transposition:

〈RQ(λ; z)|S±9(z)〉 = −〈RS±Q(λ; z)|9(z)〉
〈Q(λ; z)|S9(z)〉 = −〈RSQ(λ; z)|9(z)〉.

(3.0.4)

In fact the construction of theQ operator repeates the similar construction of Pasquier and
Gaudin [2]. It should be noted that the building ofQ operator follows the main line suggested
by Baxter [1].

The operatort (λ) ≡ Tr T (λ), where

T (λ) ≡ L1(λ + c1) · · ·Ln(λ + cn)

Lk(αk) = η ·
(
αk + xk∂k + sk −∂k
x2
k ∂k + 2skxk αk − xk∂k − sk

)
αk = λ + ck

η

is invariant with respect to transformation of the local matricesLk [1]:

Lk → L̄k ≡ N−1
k LkNk+1 Nn+1 ≡ N1

where theNk are matrices with scalar elements. Simple calculation shows that the matrix
elements of the transformed matrix

L̄k ≡ N−1
k LkNk+1 = η ·

(
L̄11
k L̄12

k

L̄12
k L̄12

k

)
Nk =

(
0 1

−1 yk

)
have the form

L̄11
k = −(xk − yk)1+αk−sk ∂k(xk − yk)sk−αk
L̄12
k = −(xk − yk)1+αk−sk (xk − yk+1)

1−αk−sk ∂k(xk − yk)sk−αk (xk − yk+1)
sk+αk

L̄21
k = ∂k L̄22

k = (xk − yk+1)
1−αk−sk ∂k(xk − yk+1)

αk+sk .

This expression for thēL operator suggests the function

φk(αk; xk; yk, yk+1) ≡ (xk − yk)αk−sk (xk − yk+1)
−αk−sk .
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The operators̄Lijk act on this function as follows:

L̄11
k φk(αk) = (αk + sk)φk(αk + 1) L̄12

k φk(αk) = 0

L̄22
k φk(αk) = (αk − sk)φ(αk − 1).

Let us fix the dependence on thex-variables in the kernel of the operatorQ̂(λ) in the form

Q(λ; x)↔
n∏
k=1

φ(αk; xk; yk, yk+1) ηαk = λ + ck

where{yi} is now the set of arbitrary parameters. Then we have

t (λ)Q(λ; x; y) = Tr
n∏
k=1

L̄kφk(αk) =
n∏
k=1

(
η(αk + sk)φk(αk + 1) 0

. . . η(αk − sk)φk(αk − 1)

)
.

After multiplication of these triangular matrices and calculation of the trace, we obtain the
‘right’ Baxter’s relation:

t (λ)Q(λ; x) = 1+(λ)Q(λ + η; x) +1−(λ)Q(λ− η; x).
In the next step we fix the dependence on thez-variables in the kernel of the operatorQ̂(λ) to
obtain the ‘left’ Baxter’s relation:

Q(λ; x, z)t (λ) = 1+(λ)Q(λ + η; x, z) +1−(λ)Q(λ− η; x, z).
The rules (3.0.4) allow us to move theSL(2)-generators from the function9(z) to the kernel
of theQ operator:

〈RQ(λ; x, z)|L1 . . . Ln9(z)〉 = 〈RL′1 . . . L′nQ(λ; x, z)|9(z)〉
where

L′k ≡ η ·
(
αk − Sk −S−k
−S+

k αk + Sk

)
= [σ2 · Lkσ2

]t
and ‘t’ means transposition. Then we transform the trace of the product of theL′ matrices

TrL′1 · · ·L′n = Tr
[
Ln · · ·L1

]t = TrLn · · ·L1

and finally obtain

〈RQ(λ; x, z)|Tr
[
L1 · · ·Ln

]
9(z)〉 = 〈R Tr

[
Ln · · ·L1

]
Q(λ; x, z)|9(z)〉. (3.0.5)

Now it is possible to repeat all calculations as for the thex-variable case. Only one obvious
modification, related to the opposite ordering ofL matrices on the right-hand side of (3.0.5),
is required: the new auxiliary parametersvk have to be ordered in the same ‘opposite way’.
The final result is as follows:

Q(λ; z)↔
n∏
k=1

φ(αk; zk; vk, vk−1).

So far we have concentrated on the first property ofQ operator, namely Baxter’s equation, and
obtain the result that the operator with general kernel of the type

Q(λ; x, z) =
n∏
k=1

∫
dyk dvk φ(αk; xk; yk, yk+1)0(y, v)φ(αk; zk; vk, vk−1)

obeys this equation. In the next step the function0(y, v) is determined from the commutativity
requirement:

Q̂(µ)Q̂(λ) = Q̂(λ)Q̂(µ) t (µ)Q̂(λ) = Q̂(λ)t (µ).
In what follows we shall concentrate on the case of the homogeneousXXX chain, where the
function0(y, v) has the simplest form.
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3.1. TheQ operator for the homogeneousXXX chain

In this section we consider the homogeneousXXX chain of equal spins:ci = 0, si = s. The
kernel

Q(λ; x, z) ≡ (−1)−2sn
n∏
k=1

(xk − zk)−(ηs−λ)/η(xk − zk+1)
−(ηs+λ)/η

has the ‘true’x- andz-dependences and therefore theQ operator can be defined as follows:

Q̂(λ)9(x) = 〈RQ(λ; x, z)|9(z)〉 =
n∏
k=1

〈(1− zkxk)−(ηs−λ)/η(1− zkxk−1)
−(ηs+λ)/η|9(z)〉.

There are some useful integral representations for theQ operator obtained here.

3.2. Theα representation for theQ operator

Let us consider theQ operator

Q̂(λ)9(x1, . . . , xn) ≡
n∏
k=1

〈(1− xk−1zk)
−(ηs+λ)/η(1− xkzk)−(ηs−λ)/η|9(z1, . . . , zn)〉

and transform thezk integral using the following identity:∫
|zk |61

Dzk (1− xkz̄k)−a(1− xk−1z̄k)
−b9(zk)

= 0(2s)

0(a)0(b)

∫ 1

0
dα αa−1(1− α)b−19

[
αxk + (1− α)xk−1

]
a + b = 2s. (3.2.1)

To prove this identity we use the Feynman formula

1

AaBb
= 0(a + b)

0(a)0(b)

∫ 1

0
dα αa−1(1− α)b−1 1[

αA + (1− α)B]a+b (3.2.2)

and transform the product

(1− xkz̄k)−a(1− xk−1z̄k)
−b = 0(a + b)

0(a)0(b)

∫ 1

0
dα

αa−1(1− α)b−1[
1− (αxk + (1− α)xk−1)z̄k

]2s .
The remainingz integral can easily be calculated:∫

|zk |61
Dzk (1− xz̄k)−2s9(zk) = 9(x) x ≡ αxk + (1− α)xk−1.

Finally we obtain the useful integral representation (α representation) for theQ operator:

Q̂(λ)9(x) ≡
n∏
k=1

0(λ; s)
∫ 1

0
dαk α

(ηs−λ)/η−1
k ᾱ

(ηs+λ)/η−1
k 9

[
. . . , αkxk + ᾱkxk−1, . . .

]
(3.2.3)

whereᾱ ≡ 1− α and

0(λ; s) ≡ 0(2s)

0(s + λη−1)0(s − λη−1)
.

Let us consider the eigenvalue problem for theQ operator

Q̂(λ)9(x) = Q(λ)9(x)
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where the polynomial9(x) belongs to the space of homogeneous polynomials of degree
l (2.2.8):

9(x) =
∑
p

9p1,...,pnx
p1
1 . . . xpnn p1 + p2 + · · · + pn = l l = 0, 1, 2, . . . . (3.2.4)

TheQ operator transforms polynomial9(x) to homogeneous polynomial of degreel whose
coefficients are polynomials inλ of degreel. Therefore eigenvaluesQ(λ) of theQ operator
are polynomials inλ of degreel.

For the proof we use obtainedα representation. Let us consider the action of theQoperator
on the polynomial9(x):

Q̂(λ)9(x) ≡
∑
p

9p1,...,pn

n∏
k=1

0(λ; s)
∫ 1

0
dαk α

(ηs−λ)/η−1
k ᾱ

(ηs+λ)/η−1
k

[
αkxk + ᾱkxk−1

]pk
.

The expression for theαk integral have the form

0(λ; s)
∫ 1

0
dαk α

(ηs−λ)/η−1
k ᾱ

(ηs+λ)/η−1
k

[
αkxk + ᾱkxk−1

]pk = pk∑
m=0

Cpk,mx
m
k x

pk−m
k−1

where the coefficients

Cpk,m =
pk!

m!(pk −m)!
0(2s)

0(2s + pk)

0(s − λη−1 +m)

0(s − λη−1)

0(s + λη−1 + pk −m)
0(s + λη−1)

are polynomials inλ of degreepk because of evident equality

0(a +m)

0(a)
= a(a + 1) · · · (a +m− 1).

There are similar expressions for the remainingα integrals and we obtain the result that the
Q operator transforms the polynomial9(x) to the homogeneous polynomial of degreel whose
coefficients are polynomials inλ of degreep1 + p2 + · · ·pn = l.

There exists some another useful representation for theQ operator (t representation):

Q̂(λ)9(x) ≡
n∏
k=1

0(λ; s)
(xk − xk−1)2s−1

×
∫ xk

xk−1

dtk (tk − xk−1)
(ηs−λ)/η−1(xk − tk)(ηs+λ)/η−19[. . . tk . . .]. (3.2.5)

This formula is obtained from (3.2.3) by the following change of variables:

tk = αkxk + ᾱkxk−1.

3.3. SL(2)-invariance and commutativity of theQ operator

We shall prove two important properties of theQ operator obtained above:SL(2)-invariance
and commutativity. Let us begin fromSL(2)-invariance

SQ̂(λ)9(x) = Q̂(λ)S9(x) S9(x) ≡ (cx + d)−2s9(Sx) Sx ≡ ax + b

cx + d
.

The simplest way is to use the representation (3.2.5). We start fromSQ̂(λ):

SQ̂(λ)9(x) ∼ (Sxk − Sxk−1)
−2s+1

×
∫ Sxk

Sxk−1

dt (t − Sxk−1)
(ηs−λ)/η−1(Sxk − t)(ηs+λ)/η−19(t)
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and make the following changes of variable in thet integral:

t = Sτ = aτ + b

cτ + d
Sτ − Sx = τ − x

(cτ + d)(cx + d)
dt = dτ

(cτ + d)2
.

After these changes of variable thet integral is transformed to theτ integral of the required
form:

(xk − xk−1)
−2s+1

∫ xk

xk−1

dτ (τ − xk−1)
(ηs−λ)/η−1(xk − τ)(ηs+λ)/η−1(cτ + d)−2s9(Sτ)

∼ Q̂(λ)S9(x).

It is worth emphasizing that all the factors like(cxk +d)−2s are cancelled in the whole product.
The second important property of theQ operator is commutativity:

Q̂(µ)Q̂(λ) = Q̂(λ)Q̂(µ). (3.3.1)

It follows that there exists a unitary operatorU independent ofλ which diagonalizesQ̂(λ)
simultaneously for all values ofλ, and therefore due to Baxter’s relation the operatorsQ̂(λ)

andt (µ) also commute:

t (µ)Q̂(λ) = Q̂(λ)t (µ). (3.3.2)

It is useful to visualize theQ operator itself and the product of the twoQ operators as shown
in the following diagram: the line with indexa between the pointsx andz represents the
function (1− xz)−a wherea = (ηs − λ)/η andb = (ηs − µ)/η. The integration (3.0.3) in
any four-point vertex is assumed.
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Let us consider the product̂Q(λ)Q̂(µ) and the corresponding kernel

〈Q(λ; x; y)|Q(µ; y; z)〉

≡
n∏
k=1

〈
(1− xk−1yk)

(−λ−ηs)/η(1− xkyk)(λ−ηs)/η
∣∣(1− ykzk+1)

(µ−ηs)/η(1− ykzk)(−µ−ηs)/η
〉
.

The ‘mechanism’ of commutativity is shown below [2]:
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· · · =

and is grounded on the ‘local’ identity

〈(1− xk−1y)
−2s+a(1− xky)−a|(1− yzk)−b(1− yzk+1)

−2s+b〉 · (1− zkxk−1)
a−b

= 〈(1− xk−1y)
−2s+b(1− xky)−b

∣∣(1− yzk)−a(1− yzk+1)
−2s+a

〉
· (1− zk+1xk)

a−b. (3.3.3)

The graphic representation of this identity (a, b are arbitrary parameters) is
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=

xk zk+1

xk−1 zk

a

2s − a b

2s − b

a − b

a − b

a2s − b

b 2s − a

The proof of the equality (3.3.3) can be found in the appendix.

3.4. Eigenvalues of theQ operator forn = 2

The casen = 2 is the simplest one:

t (λ) = 2λ2 + 2η2 ES1ES2 = 2λ2 − 2η2s(s − 1) + η2L.

There exists only one integral of motion, namely the two-particle CasimirL ≡ (ES1 + ES2)
2. Its

highest-weight eigenfunctions have the form

9l(x1, x2) = (x1− x2)
l L9l = (l + 2s)(l + 2s − 1)9l.

Due toSL(2)-invariance these functions are eigenfunctions for theQ operator also. Let us
calculate the eigenvalueQl(λ):

Q̂(λ)9l = Ql(λ) ·9l.
The simplest way is to use theα representation

Q̂(λ)9l ≡ 02(λ; s)
∫ 1

0
dα dβ (αβ)(ηs−λ)/η−1(ᾱβ̄)(s+λ)/η−1 ·9l

[
αx1 + ᾱx2;βx2 + β̄x1

]
so that we obtain

Ql(λ) = (−1)l02(λ; s)
∫ 1

0
dα dβ (αβ)(ηs−λ)/η−1(ᾱβ̄)(s+λ)/η−1(1− α − β)l.

The eigenvalueQl(λ) was obtained in equivalent form in the paper [7] and the polynomials
(in λ) Ql(λ) coincide with the Hahn orthogonal polynomials.
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4. TheQ operator for λ = ±ηs and local Hamiltonians

Let us consider theQ operator in theα representation:

Q̂(λ)9(x) ≡
n∏
k=1

0(λ; s)
∫ 1

0
dαk α

(ηs−λ)/η−1
k ᾱ

(ηs+λ)/η−1
k 9

[
. . . αkxk + ᾱkxk−1 . . .

]
for the special value of the spectral parameterλ = ηs +ηε, and calculate the first two terms of
theε expansion.

We start from theαk integral

0(2s)

0(2s + ε)0(−ε)
∫ 1

0
dα α−ε−1ᾱ2s+ε−19

[
. . . αxk + ᾱxk−1 . . .

]
.

The prefactor in this expression is proportional toε and there is a singularε-pole term in the
α integral because of the singularity at the pointα = 0. For the calculation of theε-pole term
one can putα = 0 in the argument of the9 function:∫ 1

0
dα α−ε−1ᾱ2s+ε−19

[
αxk + ᾱxk−1

]→ 0(−ε)0(2s + ε)

0(2s)
·9[xk−1

]
.

In the main order of theε expansion we need the singular part of the integral alone, and have

Q̂(ηs)9(x1, x2, . . . , xk, . . . , xn) = 9(xn, x1, . . . , xk−1, . . . , xn−1). (4.0.1)

Therefore theQ operator forλ = ηs coincides with the ‘shift’ operatorP :

P9(x1, x2, . . . , xk, . . . , xn) = 9(xn, x1, . . . , xk−1, . . . , xn−1) Q̂(ηs) = P.
In the next order of theε expansion we have to extract theε-pole contributions from the
n− 1 α integrals and the next term of theε expansion from the one remaining integral. This
remainingαk integral has the form

0(2s)

0(2s + ε)0(−ε)
∫ 1

0
dαk α

−ε−1
k ᾱ2s+ε−1

k 9(. . . xk−2, αkxk + ᾱkxk−1, xk . . .).

Note thatε-pole contributions effectively shift all arguments of the9(x1, . . . , xn) function
except for thekth one. In calculating theαk integral it is useful to add and subtract the pole
term:

0(2s)

0(2s + ε)0(−ε)
∫ 1

0
dα α−ε−1ᾱ2s+ε−1

[
9(αxk + ᾱxk−1)±9(xk−1)

]
.

The integral with the difference is regular so we can putε = 0 in the integrand and extract the
required contribution:

−ε
∫ 1

0
dα

ᾱ2s−1

α

[
9(αxk + ᾱxk−1)−9(xk−1)

]
+9(xk−1).

Finally we obtain the first two terms in theε expansion of theQ operator:

Q̂(ηs + ηε) = P + ε
n∑
k=1

H−k−1,k + O(ε2)

where the operatorH−k−1,k is defined as follows:

H−k−1,k9(x1, . . . , xk, . . . , xn)

= −
∫ 1

0
dα

ᾱ2s−1

α

[
9(. . . xk−2, αxk + ᾱxk−1, xk . . .)

− 9(. . . xk−2, xk−1, xk . . .)
]
.
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Note this ‘two-particle’ operator is notSL(2)-invariant.
In a similar way one can calculate the first two terms of theε expansion forλ = −ηs:

Q̂(−ηs + ηε) = 1− ε
n∑
k=1

H +
k−1,k + O(ε2)

where

H +
k−1,k9(x1, . . . , xk, . . . , xn)

= −
∫ 1

0
dα

ᾱ2s−1

α

[
9(. . . xk−1, ᾱxk + αxk−1, xk+1 . . .)

− 9(. . . xk−1, xk, xk+1 . . .)
]
.

Let us consider theε expansion of the following combination ofQ operators:

Q̂−1(ηs)Q̂(ηs + ηε)− Q̂−1(−ηs)Q̂(−ηs + ηε) = ε
n∑
k=1

Hk−1,k + O(ε2).

Using the expressions for the operatorsH−k−1,k andH +
k−1,k it is easy to check that the operator

Hk−1,k acts only on the variableszk−1, zk and coincides with the integral operator considered
in (2.3.3). Finally, we have found the following operator relations:

• Q̂(−ηs) = 1

• Q̂(ηs) = P
• Q̂−1(ηs)Q̂(ηs + ηε)− Q̂−1(−ηs)Q̂(−ηs + ηε) = εH + O(ε2); H ≡∑n

k=1 Hk−1,k.

Let us compare these relations with those obtained by the ABA method, namely equations
(2.3.4), (2.3.6). The first relation fixes the normalization of theQ operator and the
normalization of the eigenvalues of theQ operator:

Q(λ) =
l∏

j=1

λ− λj
−ηs − λj . (4.0.2)

The second relation allows one to express the eigenvalues of the ‘shift’P operator in terms of
the functionQ(λ):

Pl = Q(ηs) =
l∏

j=1

λj − ηs
λj + ηs

in agreement with (2.3.6). The third relation is the operator version of the equality (2.3.4).

5. Asymptotic expansion of theQ operator for λ→∞

Lipatov [9] has found some beautiful symmetry in theXXX model, namely the duality
transformation. In this section we show that the duality operatorS arises naturally as the
leading term in the asymptotic of theQ operator for largeλ.

To start with let us define a transformation which is analogous to the Fourier tranformation
from the coordinate representation to the momentum representation.



5312 SÉ Derkachov

5.1. The momentum representation

Let us define the transformationT from the function9̄(x) in the ‘momentum’ representation
to the function9(x) in the ‘coordinate’ representation used up to this point:

9(x) = T [9̄(x)] 9(x1, . . . , xn) ≡ 9̄(∂a1, . . . , ∂an)

n∏
k=1

1

[1− akxk]2s

∣∣∣∣
a=0

.

This transformation maps polynomials to polynomials and can be represented as a combination
of Laplace transformation and inversion:

T
[
9̄(x)

] = 1

0(2s)
R

∫ ∞
0

dt e−tx t2s−19̄(t).

Using the well known properties of the Laplace transformation and (3.0.4), it is easy to derive
the expression for theSL(2)-generators in the ‘momentum’ representation:

T
[
x9̄(x)

] = [x2∂ + 2sx]9(x)

T
[
(x∂2 + 2s∂)9̄(x)

] = ∂9(x)
T
[
(x∂ + s)9̄(x)

] = (x∂ + s)9(x).

To obtain the rules for the transformation of the commuting operatorsQk (2.2.3) from one
representation to the other, we start from the very beginning and consider the transformation
of theL operator. TheL operator in the coordinate representation is theT -transformation
from theL′ operator in the ‘momentum’ representation:

L =
(
λ + η[x∂ + s] −η∂
η[x2∂ + 2s∂] λ− η[x∂ + s]

)
L′ =

(
λ + η[x∂ + s] −η[x∂2 + 2s∂]

ηx λ− η[x∂ + s]

)
= σ2L̄σ2

where

L̄ ≡
(
λ− η[x∂ + s] −ηx
η[x∂2 + 2s∂] λ + η[x∂ + s]

)
.

Theσ2 matrices are cancelled for the transfer matrix, and we can work directly withL̄.
Finally we have the formal rules for the transformation from one representation to the

other:

η→−η x → ∂

and the operatorsx and∂ have to be ‘normal ordered’: all∂ ’s stay on the right of thex’s.

5.2. Asymptotic expansion for largeλ

Let us calculate the asymptotic of theQ operator

Q̂(λ)9(x) =
n∏
k=1

0(λ; s)
∫ 1

0
dαk α

(ηs−λ)/η−1
k ᾱ

(ηs+λ)/η−1
k 9

[
. . . αkxk + ᾱkxk−1 . . .

]
for large values of the spectral parameterλ. Without loss of generality we can restrict the full
space of polynomials to the subspace of homogeneous (degreel) polynomials9(x) (3.2.4).

There is an expression for theQ operator which is more useful in calculating the
asymptotic:

Q̂(λ)9(x) = 9̄(∂a)
n∏
k=1

1

[1− akxk]s−λη−1[1− akxk−1]s+λη−1

∣∣∣∣
a=0

. (5.2.1)
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This formula can be obtained as follows:∫ 1

0
dα α(ηs−λ)/η−1ᾱ(ηs+λ)/η−19

[
αxk + ᾱxk−1

]
= 9̄[∂ak ]

∫ 1

0
dα

α(ηs−λ)/η−1ᾱ(ηs+λ)/η−1

[1− ak(αxk + ᾱxk−1)]2s

= 0−1(λ; s)9̄[∂ak ]
1

[1− akxk]s−λη−1
[
1− akxk−1

]s+λη−1

where the Feynman formula (3.2.2) is used in the ‘opposite’ direction.
For the calculation of the asymptotic it is useful to rescale the variablesai and use the

standard expansion for the logarithm:

ai → ηai

λ

(
1− ax

λ

)λ−s
= exp

{
−ax +

2sax − a2x2

2λ
+ · · ·

}
.

Let us consider the contribution withak:

9̄(∂ak )
1

[1− akxk]s−λη−1[1− akxk−1]s+λη−1

∣∣∣∣
ak=0

= 9̄(λη−1∂a) exp

{
a(xk−1− xk)

+
η(xk−1 + xk)

2λ

(
2sa + (xk−1− xk)a2

)
+ · · ·

}∣∣∣∣
a=0

= 9̄(λη−1z) +
η(xk−1 + xk)

2λ

(
x∂2 + 2s∂

)
9̄(λη−1x)

∣∣∣∣
x=xk−1−xk

+ O(λ−2).

The polynomial9(x) is homogeneous, so that

9̄(λη−1x) = (λη−1)l9̄(x)

and finally we obtain the first two terms of the asymptotic expansion of theQ operator for
largeλ:

Q̂(λ) =
l∑

k=0

Q̂k · (λη−1)l−k

Q̂09(x) = 9̄(xn − x1, x1− x2, . . . , xn−1− xn)

Q̂19(x) = 1

2

n∑
k=1

(xk + xk−1)
(
zk∂

2
zk

+ 2s∂zk
)
9̄(z)

∣∣∣∣
zk=xk−1−xk

.

(5.2.2)

It seems that all operatorŝQk are local differential operators in the momentum representation.
The duality transformation operatorS is defined in the following way:

S9(x1, . . . , xn) ≡ 9̄(xn − x1, x1− x2, . . . , xn−1− xn).
This operator coincides with the leading term̂Q0 of the asymptotic expansion and therefore
the operatorS commutes with all integrals of motionQk (2.2.3). Its common eigenfunction
has to be the eigenfunction of theS operator:

S9(x1, . . . , xn) = Sl ·9(x1, . . . , xn)

⇔ 9̄(xn − x1, x1− x2, . . . , xn−1− xn) = Sl ·9(x1, . . . , xn).
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Note that the subspace of the common eigenvectors ofQk with some eigenvaluesqk is the
SL(2) module generated by the highest-weight vector9. The highest-weight vector9 is
defined by the equationS−9 = 0 and can be constructed by the ABA method (2.2.8). From
the expression for the eigenvalue of theQ operator (4.0.2) one can derive the expression for
theSl :

Q(λ) =
l∏

j=1

λ− λj
−ηs − λj →

(−λ)l∏l
j=1(ηs + λj )

Q̂(λ)→ (λη−1)l · S.

Therefore the eigenvalue of the duality operator for the highest-weight vector of the
SL(2) module has the form

Sl = (−η)l∏l
j=1(ηs + λj )

.

It is easy to see that all other vectors of theSL(2) module form the ‘zero’ subspace:

8(x1, . . . , xn) = S+9(x1, . . . , xn)

→ S8(x1, . . . , xn) = S(x1 + · · · + xn)9̄(x1, . . . , xn) = 0.

6. Conclusions

We have constructed Baxter’sQ operator for the homogeneousXXX spin chain and have
checked the consistency of the results obtained with the corresponding formulae obtained in
the framework of the ABA method. We have found the connection between theQ operator
and the duality symmetry operator.

The construction considered here can be applied to the inhomogeneousXXX model, but
we are not able to obtain the useful and compact representation for theQ operator in this case.

There exists a more universal approach to the construction of the quantumQ operator.
Kuznetsov and Sklyanin informed me that they recently obtained similar results [11] using
the approach of [10] based on the correspondence between the quantumQ operator and the
classical B̈acklund transformation.

Acknowledgments

I am very grateful to I V Komarov, V B Kuznetsov, L N Lipatov and E K Sklyanin for their
interest in this work and for useful discussions. I would especially like to thank A N Manashov
for critical remarks and stimulating discussions. This work was supported by RFFR Grant 97-
01-01152.

Appendix

In this appendix we prove the identity

〈(1− xk−1y)
−2s+a(1− xky)−a|(1− yzk)−b(1− yzk+1)

−2s+b〉 · (1− zkxk−1)
a−b

= 〈(1− xk−1y)
−2s+b(1− xky)−b|(1− yzk)−a(1− yzk+1)

−2s+a〉
× (1− zk+1xk)

a−b. (A.1)
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First of all note that the equality (3.2.1) can be rewritten in integral form:

〈(1− xk−1z)
−a(1− xk−1z)

−b|9(z)〉

= 0(2s)

0(a)0(b)

1

(xk − xk−1)2s−1

∫ xk

xk−1

dt (t − xk−1)
b−1(xk − t)a−19(t)

and therefore the identity (A.1) is equivalent to the following integral identity:

0(2s)

0(2s − a)0(a)
(1− xk−1zk)

a−b

(xk − xk−1)2s−1

∫ xk

xk−1

dt
(t − xk−1)

a−1(xk − t)2s−a−1

(1− tzk)b(1− tzk+1)2s−b

= 0(2s)

0(2s − b)0(b)
(1− xkzk+1)

a−b

(xk − xk−1)2s−1

×
∫ xk

xk−1

dτ
(τ − xk−1)

b−1(xk − τ)2s−b−1

(1− τzk)a(1− τzk+1)2s−a
. (A.2)

Let us start from thet integral. There exists the bilinear transformation with the properties

z = Sx = Ax − C
Cx +D

Sxk = zk Sxk−1 = zk+1.

This transformation can be obtained as follows:
z− zk
z− zk+1

= R x − xk
x − xk−1

⇒ z = x(xk − xk−1R) + zkxk−1R − xkzk+1

x(1− R) + zkR − zk+1
= Ax − C
Cx +D

and therefore

A = (xk − xk−1R) D = zkR − zk+1 C = 1− R R = 1− xkzk+1

1− zkxk−1
.

It is worth emphasizing the additional properties

Szk = xk , Szk+1 = xk−1
Czk+1 +D

Czk +D
= R.

Let us make the same bilinear transformation in thet integral:

t = Sτ = Aτ − C
Cτ +D

1− tzk = Czk +D

Cτ +D
(1− τxk) xk = Szk xk−1 = Szk+1.

Then we obtain

1

(xk − xk−1)2s−1

∫ xk

xk−1

dt
(t − xk−1)

a−1(xk − t)2s−a−1

(1− tzk)b(1− tzk+1)2s−b

= (Czk+1 +D)a−b

(Czk +D)a−b
1

(zk − zk+1)2s−1

∫ zk

zk+1

dτ
(τ − zk+1)

a−1(zk − τ)2s−a−1

(1− τxk)b(1− τxk−1)2s−b
.

In the next step we transform theτ integral using theα representation and the Feynman formula:

1

(zk − zk+1)2s−1

∫ zk

zk+1

dτ
(τ − zk+1)

a−1(zk − τ)2s−a−1

(1− τxk)b(1− τxk−1)2s−b

=
∫ 1

0
dα

αa−1ᾱ2s−a−1

[1− (αzk + ᾱzk+1)xk]b[1− (αzk + ᾱzk+1)xk−1]2s−b

= 0(2s)

0(b)0(2s − b)
∫ 1

0
dβ βb−1β̄2s−b−1

×
∫ 1

0
dα

αa−1ᾱ2s−a−1

[1− (αzk + ᾱzk+1)(βxk + β̄xk−1)]2s
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= 0(a)0(2s − a)
0(b)0(2s − b)

∫ 1

0
dβ

βb−1β̄2s−b−1

[1− (βxk + β̄xk−1)zk]a[1− (βxk + β̄xk−1)zk+1]2s−a

= 0(a)0(2s − a)
0(b)0(2s − b)

1

(xk − xk−1)2s−1

∫ xk

xk−1

dτ
(τ − xk−1)

b−1(xk − τ)2s−b−1

(1− τzk)a(1− τzk+1)2s−a
.

Collecting all these together, we obtain the equality (A.2).
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